Interleukin-4, Oxidative Stress, Vascular Inflammation and Atherosclerosis.
نویسندگان
چکیده
The pro-oxidative and pro-inflammatory pathways in vascular endothelium have been implicated in the initiation and progression of atherosclerosis. In fact, inflammatory responses in vascular endothelium are primarily regulated through oxidative stress-mediated signaling pathways leading to overexpression of pro-inflammatory mediators. Enhanced expression of cytokines, chemokines and adhesion molecules in endothelial cells and their close interactions facilitate recruiting and adhering blood leukocytes to vessel wall, and subsequently stimulate transendothelial migration, which are thought to be critical early pathologic events in atherogenesis. Although interleukin-4 (IL-4) was traditionally considered as an anti-inflammatory cytokine, recent in vitro and in vivo studies have provided robust evidence that IL-4 exerts pro-inflammatory effects on vascular endothelium and may play a critical role in the development of atherosclerosis. The cellular and molecular mechanisms responsible for IL-4-induced atherosclerosis, however, remain largely unknown. The present review focuses on the distinct sources of IL-4-mediated reactive oxygen species (ROS) generation as well as the pivotal role of ROS in IL-4-induced vascular inflammation. These studies will provide novel insights into a clear delineation of the oxidative mechanisms of IL-4-mediated stimulation of vascular inflammation and subsequent development of atherosclerosis. It will also contribute to novel therapeutic approaches for atherosclerosis specifically targeted against pro-oxidative and pro-inflammatory pathways in vascular endothelium.
منابع مشابه
اثر گلوتامین بر شاخص های استرس اکسیداتیو، التهابی گلیکه و همچنین فعالیت سیستم گلیاوکسیلاز در موش های صحرایی دیابتی- آترواسکلروزی
Background and purpose: Vascular complications of diabetes are the most common causes of mortality in diabetic patients. Hyperglycemia, insulin resistance, dyslipidemia, glycation products, oxidative stress, and inflammation lead to atherosclerosis and diabetic nephropathy in diabetes. This research aimed at studying the effect of glutamine (Gln) on main causes of vascular complications in diab...
متن کاملTormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway
Tormentic acid (TA) is a triterpene isolated from the stem bark of the plant Vochysia divergens and has been reported to exhibit anticancer, anti‑inflammatory and anti‑atherogenic properties. However, the functions of TA in hydrogen peroxide (H2O2)‑induced oxidative stress and inflammation in rat vascular smooth muscle cells (RVSMCs) remain unclear. Therefore, the present study aimed to investi...
متن کاملEating, vascular biology, and atherosclerosis: a lot to chew on.
Coronary risk factors, such as hypercholesterolaemia and hypertension, are primary causes of atherosclerosis, at least partly due to their adverse impact on vascular biology. Impaired vascular biological states, such as endothelial dysfunction and inflammation, however may be independently atherogenic. Three examples that suggest that vascular indexes need to be considered independent of risk f...
متن کاملS100A12 mediates aortic wall remodeling and aortic aneurysm.
RATIONALE S100A12 is a small calcium binding protein that is a ligand of RAGE (receptor for advanced glycation end products). RAGE has been extensively implicated in inflammatory states such as atherosclerosis, but the role of S100A12 as its ligand is less clear. OBJECTIVE To test the role of S100A12 in vascular inflammation, we generated and analyzed mice expressing human S100A12 in vascular...
متن کاملInterleukin-1 Regulates Multiple Atherogenic Mechanisms in Response to Fat Feeding
BACKGROUND Atherosclerosis is an inflammatory process that develops in individuals with known risk factors that include hypertension and hyperlipidaemia, influenced by diet. However, the interplay between diet, inflammatory mechanisms and vascular risk factors requires further research. We hypothesised that interleukin-1 (IL-1) signaling in the vessel wall would raise arterial blood pressure an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomolecules & therapeutics
دوره 18 2 شماره
صفحات -
تاریخ انتشار 2010